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Abstract

This paper is our final report for the project of the CS229 (Machine Learning) class at Stanford University. Computer
vision techniques have been widely employed to solve various image analysis problems, especially in the world of medecine.
Deep learning and computer vision provide precious tools for early diagnosis of multiple diseases using medical imagery. In
this project, we focus on developing models to detect glaucoma using OCT eye fundus images.

Our dataset consists of 650 labeled eye-fundus images and a small table of extracted features for each of the images, and
both the images and the extracted features were used to run the deep learning models. Model evaluation was performed
using F1 score, precision and recall metrics.

1. Introduction
Glaucoma, an asymptomatic eye disease and a leading cause of irreversible blindness, poses a significant health concern,

with a projected number of patients of 112 million by 2040. This chronic neuropathy induces structural optic nerve damage
with visible changes on an eye fundus image, ultimately leading to functional vision loss. Artificial intelligence offers
the potential to improve diagnosis and screening for glaucoma with minimal reliance on human input. This project aims to
leverage the capabilities of Deep Learning for binary classification of glaucoma using Optical Coherence Tomography (OCT)
eye fundus images. The core methodology involves converting these OCT images into arrays of pixel values, serving as input
for our DL models. Our dataset is composed of 650 OCT eye-fundus images. The main challenge faced in this project is
the small amount of data available. Even if the final accuracy obtained is not enough for a direct medical application, the
exploration of common techniques to deal with small amount of data made this project very interesting and made us learn a
lot about this common problem faced in Deep Learning. We explored different approaches such as dataset splitting to deal
with this limitation. We also tried the new powerful machine learning architecture Transformer and achieved great results.
The evaluation metrics for our models are the F1 score, precision, and recall, which are critical in assessing the balance
between the model’s sensitivity and specificity, especially in a medical diagnostic context. This report will describe previous
work done on the topic, present our dataset and detail the methodologies employed and the challenges faced. We will then
describe the solutions implemented, ultimately presenting the results of applying Deep Learning to the early detection of
glaucoma through OCT image analysis.

2. Related Work
Since early glaucoma detection is key to prevent optic nerve damage leading to blindness, computer vision on eye fundus

images has been increasingly used in recent years. If the results aren’t yet as reliable as the human eye, the process is
automatic and wouldn’t require the input of an experimented specialist. The glaucoma could be directly predicted from the
medical image itself. The damage caused by glaucoma, such as neuroretinal rim thinning around the optic nerve head, can be
quantified in fundus photos by measuring the vertical cup-to-disc ratio (VCDR). An elevated VCDR is considered suspicious
for the glaucoma diagnosis. In this section, I will describe a few papers and the methods implemented to detect glaucoma on
similar images then the ones we use in our models.



2.1. Cup-Disk Ratio Regression and ResNet classification

In the paper ’Deep learning on fundus images detects glaucoma beyond the optic disc’ [9], the authors use a dataset of
37,627 stereoscopic color fundus images and corresponding meta-information from the University Hospitals Leuven (UZL)
in Belgium. They are the only one that combine accurate Vertical Cup Disk Ration estimation and glaucoma detection in one
study using end-to-end deep learning and that study the exact location of glaucoma symptoms on the eye fundus image using
different cropping methods. The work was divided into three main task:
1. Cropping of images using different regions and different ratios: The images were cropped in two different ways, to
prove the existence of glaucoma signs on both the optic nerve head region (ONH) and the periphery region of the fundus. For
one cropping method, only the pixels in the middle of the image are kept (ONH region), and for the other cropping method
only the periphery of the eye fundus is kept. For both of these croppings, different ratios are used to try to locate the region
of glaucoma symptoms in the most accurate way possible.

Figure 1. Cropping of the periphery region (first line) and cropping of the ONH (second line) with different ratios

2. Vertical Cup to Disk Ratio (VCDR) Regression: The baseline used is to predict the mean VCDR of the dataset (which
is 0.67) and the mean absolute error (MAE) for this baseline is 0.19. A ResNet CNN was then trained on the cropped images
of the ONH (first cropping method). A MAE of 0.079 is obtained, corresponding to an error reduction of 58% compared to
baseline.

2.2. Limitations of the paper and possible improvements

However, this paper fails to mention some key challenges regarding glaucoma detection. First, the bias in the training
dataset. The UZL images used for training mainly represent old people (age avergae is 60 years old) that have a suspicion of
glaucoma already. The fact that approximately half of the patients in this dataset present glaucoma signs on their eye-fundus
is not representative of the real-world repartition of glaucoma, that can start as early as 20 years old and only represent 0.5%
of the population. In our work, we used a more imbalanced dataset containing all ages and genders to train the model on a
dataset that more accurately represents the real-world repartition of glaucoma. Other improvements that we implemented are
the use of other neural networks and higher performance models such as transformers. We combined the VCDR regression
task and the classification in a single network and used different metrics to assess the performance of the different models.

3. Datasets and Features
Our dataset is composed of 650 publicly available eye-fundus images and of a small table of associated features. The

features are the filename, the eye (left or right) the Cup-Disk Ration (CDR) and the label of the diagnosis: glaucoma (1), no
glaucoma (0). Among the 650 pictures, 25% were diagnosed with the glaucoma and the average CDR is 0.57. Below is an
example of one of the pictures in the dataset.

Figure 2. Eye-fundus of an eye diagnosed with glaucoma

The pictures were already preprocessed to have optimal contrast, and the pixels outside the eye were set to black for
optimal performance. For our DL models our inputs are the pictures resized with size (224, 224), combined with the CDR
feature given in the table. The main challenge regarding this dataset is the small amount of data. Although the final accuracy
achieved is not enough for a medical diagnosis because of the small size of the dataset, we loved exploring different techniques
to limit this problem.



4. Methods
4.1. Prepocessing and data exploration

For the images, the main preprocessing steps were resizing the images, and associating each image with its CDR in the
table. We split the data into glaucoma positive and glaucoma negative and associated them with the features in the table. For
the table, we one-hot encoded the categorical features, filled the NaN values with the mean of the feature, and performed
some data exploration to get familiar with the dataset.

Figure 3. Repartition of the cup-disk ratio for positive and negative patients

4.2. Improved models

We selected 7 pre-trained CNN models at the first stage for pilot test and comparison: ResNet50 [4], VGG16 [6], Xcep-
tion [1], ResNet101 [4], Inception [7], MobileNet [5], and EfficientNet-B7 [8]. Based on the special features of our task
that we really care about decreasing false negative errors as much as possible. Because for our diseases detection task,
the ”miss” caused much more serious problem than ”false alarm”. Our best score were obtained for Inception [7] and
MobileNet [5]. MobileNets utilize a simplified structure incorporating depthwise separable convolutions, enabling the con-
struction of lightweight deep neural networks. In this model, two uncomplicated global hyperparameters are used in order to
effectively balance latency and accuracy.

4.3. Dealing with small amount of data

We observed clear overfitting on our initial results. To improve our scores, we decided to explore different methods to
deal with small datasets. This is a common problem in Deep Learning, as it is often challenging to gather a good amount of
labeled data for a specific problem, especially in medical applications where the data is confidential. This part of the project
was especially interesting. The method we used was mentioned in class, and consists in reducing the size of the test set to put
more data in the training set. The initial split was 520 images in the training test and 130 images in the test set. We trained
our models for the following train sizes: 520, 540, 560, 580, 600 and 620. The results are reported in the next section.

4.4. Vision Transformer model

Following the explosion of transformer models for natural language processing (NLP) tasks, there have been many papers
applying them to vision tasks. One of the prominent models is Visision Transformer model (ViT) [2]. Pixels in images can
be treated as sequences of data that can be fed into transformers. However, the computation requirement for image tasks can
scale up quickly. ViT solves this issue by splitting each image into sub-image patches, embedding each patch with a linear
projection and then the sequence of these embedded patches is fed into the transformer model.

5. Experimentation and results
We conduct our experiments on a open-sourced glaucoma detection dataset [3] that has been processed the way discussed

above with multiple pre-trained CNN models and different training methods. After training, we evaluated the trained model
on a test set and report some key metric values.



5.1. CNN models

5.1.1 Training methods

For each CNN model, we tried two ways of training: only using glaucoma images v.s. using combined inputs including
glaucoma images and CDR feature data. For the first case, we used sigmoid as activation function on the output layer. While
for the second case, to better fit the combined input, we designed a three-layers output module with size of 150*50*1, using
relu, relu, and sigmoid as activation functions, separately. For both cases, we used binary-crossentropy as loss function,
training for 20 epochs, recording the accuracy and loss during training.

5.1.2 Training results

Below are the training results of our experiments. Each subplot demonstrates the training on one CNN model using the
certain method. The upper part is the loss v.s. epoch while the lower part shows the acuracy v.s. epoch.

Training curves and model evaluation table for image inputs
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Model Precision Recall F1-score
Inception 0.56 0.57 0.57
MobileNet 0.60 0.61 0.60
ViT 0.73 0.75 0.66

Training curves and model evaluation table for image inputs and feature table inputs
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Model Precision Recall F1-score
Inception 0.59 0.60 0.59
MobileNet 0.62 0.64 0.63

5.1.3 Results and discussion

After training, we test our trained models on the test set we discussed above. The test results report the precision, recall
value, and F1-score of each model with both training methods. Because we have an imbalanced dataset where there are many



more glaucoma-negative images than glaucoma-positive images, we added weights to the training process. Evaluation tables
above demonstrate the test results of trained models.

• It is obvious that most models achieved better detection performance with combined inputs including glaucoma images
and CDR features compared with only trained with glaucoma images. Therefore, we can conclude that CDR features
are significantly useful in glaucoma detection task.

• Due to the limitation on the size of dataset, there still remains a fairly large room to improve for the glaucoma detection
method we proposed. Both Inception and MobileNet suffered critical overfit on the training data. They achieved high
and stable accuracy (both over 0.95) with a very low loss (0.0326 for Inception and 0.0046 for MobileNet) at the end
of training but still did not perform ideally on test set.

5.2. Different splitting on dataset

After getting the baseline results trained on 520-images training set, to make a better use of our size-limited dataset, we
re-split the dataset as Part. 4 discussed. For the training set of size 520, 540, 560, 580, 600, and 620, we trained them with
CNN models Inception [7] and MobileNets [5] then got the following classification results.
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Figure 6. Test results of different splitting on dataset

According to our test results, both precision v.s. training set size curves demonstrated trends that precision first increased
then dropped drastically with the increase of training set size. Precision first increased because that there are more data being
included in the training set which ease the over-fit issues and lead to a better performance for the model. However, at last,
the precision dropped drastically for that the test set at that time was too small and a few wrong predictions can harm the
precision seriously. Therefore, there is a trade-off relationship between training set and test set size when splitting the dataset
especially for tasks of small available dataset like our project. For our special case, the optimal splitting should be 560 images
for training set and 90 images for test set.

5.3. Vision Transformer

In our experiments, we applied some basic data augmentation including resizing (to 72x72-pixel images), flipping, rotating
and zooming images before separating each image into 6x6 patches. These patches are then processed and used as inputs to
a transformer decoder according to the ViT model architecture.

After training the images with ViT, the predicted results are evaluated using the same metrics used for the CNN models
(precision, recall and F1-score) and are reported in section 5.1.2. The results of this transformer model trained only on
images have already outscored the CNN models trained on both image and data features, proving that transformer is a
powerful architecture and it can be applied to many domains.

6. Conclusion and Future Work
In this paper, we proposed a novel glaucoma detection framework with a relatively small sized dataset. By leveraging

different methods includes fine-tuning the model, different dataset splitting, as well as data augmentation, plus utilizing the
pivotal feature of Cup-Disk Ration (CDR), we throughout exploited the abilities of mainstream off-the-shelf CNN models



and achieved good glaucoma detection results. Besides, by pilot testing the detection task with Transformer framework, the
results proved that Transformer has great potential in glaucoma detection task compared with current CNN models.
For future work, we plan to make better use of the ability of Transformer by exploring data features with images as the inputs
for Transformer. Meanwhile, we also plan to better utilize our limited dataset by using data augmentation.
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